Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Angewandte Chemie ; 135(13):1-1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2269425

ABSTRACT

The resulting NIR-II PS not only enables NIR-II image-guided in vivo pulmonary coronavirus photo-ablation but also demonstrates a facile approach for the development of NIR heavy-atom-free PSs. Keywords: Coronavirus Inactivation;Intersystem Crossing;NIR-II Imaging;Photosensitizer;Triplet State EN Coronavirus Inactivation Intersystem Crossing NIR-II Imaging Photosensitizer Triplet State 1 1 1 03/15/23 20230320 NES 230320 B The relationship b between molecular configuration and charge transfer processes in near-infrared-II (NIR-II) chromophores was studied, and subsequently instructed the engineering of an efficient NIR photosensitizer (PS), as reported by Wenbo Hu, Yuliang Xiao et al. in their Research Article (e202214875). The resulting NIR-II PS not only enables NIR-II image-guided in vivo pulmonary coronavirus photo-ablation but also demonstrates a facile approach for the development of NIR heavy-atom-free PSs. [Extracted from the article] Copyright of Angewandte Chemie is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

2.
Angewandte Chemie International Edition ; 62(13):1-1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2269424

ABSTRACT

The resulting NIR-II PS not only enables NIR-II image-guided in vivo pulmonary coronavirus photo-ablation but also demonstrates a facile approach for the development of NIR heavy-atom-free PSs. Keywords: Coronavirus Inactivation;Intersystem Crossing;NIR-II Imaging;Photosensitizer;Triplet State EN Coronavirus Inactivation Intersystem Crossing NIR-II Imaging Photosensitizer Triplet State 1 1 1 03/15/23 20230320 NES 230320 B The relationship b between molecular configuration and charge transfer processes in near-infrared-II (NIR-II) chromophores was studied, and subsequently instructed the engineering of an efficient NIR photosensitizer (PS), as reported by Wenbo Hu, Yuliang Xiao et al. in their Research Article (e202214875). The resulting NIR-II PS not only enables NIR-II image-guided in vivo pulmonary coronavirus photo-ablation but also demonstrates a facile approach for the development of NIR heavy-atom-free PSs. [Extracted from the article] Copyright of Angewandte Chemie International Edition is the property of John Wiley & Sons, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
Angewandte Chemie ; 135(13), 2023.
Article in English | ProQuest Central | ID: covidwho-2269422

ABSTRACT

Despite significant effort, a majority of heavy‐atom‐free photosensitizers have short excitation wavelengths, thereby hampering their biomedical applications. Here, we present a facile approach for developing efficient near‐infrared (NIR) heavy‐atom‐free photosensitizers. Based on a series of thiopyrylium‐based NIR‐II (1000–1700 nm) dyads, we found that the star dyad HD with a sterically bulky and electron‐rich moiety exhibited configuration torsion and significantly enhanced intersystem crossing (ISC) compared to the parent dyad. The electron excitation characteristics of HD changed from local excitation (LE) to charge transfer (CT)‐domain, contributing to a ≈6‐fold reduction in energy gap (ΔEST), a ≈10‐fold accelerated ISC process, and a ≈31.49‐fold elevated reactive oxygen species (ROS) quantum yield. The optimized SP@HD‐PEG2K lung‐targeting dots enabled real‐time NIR‐II lung imaging, which precisely guided rapid pulmonary coronavirus inactivation.

4.
Angew Chem Int Ed Engl ; 62(13): e202214875, 2023 03 20.
Article in English | MEDLINE | ID: covidwho-2269423

ABSTRACT

Despite significant effort, a majority of heavy-atom-free photosensitizers have short excitation wavelengths, thereby hampering their biomedical applications. Here, we present a facile approach for developing efficient near-infrared (NIR) heavy-atom-free photosensitizers. Based on a series of thiopyrylium-based NIR-II (1000-1700 nm) dyads, we found that the star dyad HD with a sterically bulky and electron-rich moiety exhibited configuration torsion and significantly enhanced intersystem crossing (ISC) compared to the parent dyad. The electron excitation characteristics of HD changed from local excitation (LE) to charge transfer (CT)-domain, contributing to a ≈6-fold reduction in energy gap (ΔEST ), a ≈10-fold accelerated ISC process, and a ≈31.49-fold elevated reactive oxygen species (ROS) quantum yield. The optimized SP@HD-PEG2K lung-targeting dots enabled real-time NIR-II lung imaging, which precisely guided rapid pulmonary coronavirus inactivation.


Subject(s)
Coronavirus Infections , Coronavirus , Humans , Photosensitizing Agents/pharmacology , Thiophenes
SELECTION OF CITATIONS
SEARCH DETAIL